18 resultados para CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the development and modification of techniques to reduce the effects of load variation and mains frequency deviation in repetitive controllers applied to active power filters. To minimize the effects of aperiodic signals resulting from the connection or disconnection of non-linear loads is developed a technique which recognizes linear and nonlinear loads, and operates to reset the controller only when the error due to the transition of considerable value, and the transition is from non-linear to linear load. An algorithm to adapt the gain of the repetitive controller, based on a sigmoid function adaptation, in order to minimize the effects caused by random noise in the measurement system is also used. This work also analyzes the effects of frequency variation and presents the main methods to cope with this situation. Some solutions are the change in the number of samples per period and the variation of the sampling rate. The first has the advantage of using linear design techniques and results in a time invariant system. The second method changes the sampling frequency and leads to a time variant system that demands a difficult analysis of stability. The proposed algorithms were tested using the methods of truncation of the number of samples and the method of changing the sampling rate of the system to compensate possible frequency variations of the grid. Experimental results are presented to validate the proposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to develop optical sensors for temperature monitoring in hydroelectric power plant heat exchangers. The proposed sensors are based on the Fiber Bragg Gratings technology. First of all, a prototype with three sensors inscribed in a same fiber was developed. This fiber was then fixed to a conventional Pt100 sensor rod and inserted in a thermowell. The ensemble was then calibrated in a workbench, presenting a maximum combined uncertainty of 2,06 °C. The sensor was installed in one of the heat exchangers of the Salto Osório’s hydroelectric power plant. This power plant is situated in the Iguaçu river, at the Paraná state. Despite the satisfactory results, the sensor was improved to a second version. In this, fifteen optical Bragg sensors were inscribed in a same fiber. The fixation with a conventional sensor was no longer necessary, because the first version results comproved the efficiency and response time in comparison to a conventional sensor. For this reason, it was decided to position the fiber inside a stainless steel rod, due to his low thermal expansion coefficient and high corrosion immunity. The utilization of fifteen fiber Bragg gratings aims to improve the sensor spatial resolution. Therefore, measurements every ten centimeters with respect to the heat exchanger’s height are possible. This provides the generation of a thermal map of the heat exchanger’s surface, which can be used for determination of possible points of obstruction in the hydraulic circuit of the heat exchanger. The heat exchanger’s obstruction in hydroelectric power plants usually occur by bio-fouling, and has direct influence in the generator’s cooling system efficiency. The obtained results have demonstrated the feasibility in application of the optical sensors technology in hydroelectric power plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power generation from alternative sources is at present the subject of numerous research and development in science and industry. Wind energy stands out in this scenario as one of the most prominent alternative in the generation of electricity, by its numerous advantages. In research works, computer reproduction and experimental behavior of a wind turbine are very suitable tools for the development and study of new technologies and the use of wind potential of a given region. These tools generally are desired to include simulation of mechanical and electrical parameters that directly affect the energy conversion. This work presents the energy conversion process in wind systems for power generation, in order to develop a tool for wind turbine emulation testing experimental, using LabVIEW® software. The purpose of this tool is to emulate the torque developed in an axis wind turbine. The physical setup consists of a three phase induction motor and a permanent magnet synchronous generator, which are evaluated under different wind speed conditions. This tool has the objective to be flexible to other laboratory arrangements, and can be used in other wind power generation structures in real time. A modeling of the wind power system is presented, from the turbine to the electrical generator. A simulation tool is developed using Matlab/Simulink® with the purpose to pre-validate the experiment setup. Finally, the design is implemented in a laboratory setup.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the development of a boost converter with the possibility of higher gain than the conventional boost converter for applications under similar conditions and increased power. Presents the main concepts involving the boost converter and two variations: the boost converter of three levels and the boost converter interspersed with two converter cells. The breakdown mounting positions, the operating steps, the addressing and the main strengths of each converter in order to check for possible uses in the construction of a prototype joining their main advantages. In the presentation of this converter addresses the operating steps, the equation governing its design, the simulations obtained through software (PSIM), a comparison between the boost converter models studied and the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electric power systems are getting more complex and covering larger areas day by day. This fact has been contribuiting to the development of monitoring techniques that aim to help the analysis, control and planning of power systems. Supervisory Control and Data Acquisition (SCADA) systems, Wide Area Measurement Systems and disturbance record systems. Unlike SCADA and WAMS, disturbance record systems are mainly used for offilne analysis in occurrences where a fault resulted in tripping of and apparatus such as a transimission line, transformer, generator and so on. The device responsible for record the disturbances is called Digital Fault Recorder (DFR) and records, basically, electrical quantities as voltage and currents and also, records digital information from protection system devices. Generally, in power plants, all the DFRs data are centralized in the utility data centre and it results in an excess of data that difficults the task of analysis by the specialist engineers. This dissertation shows a new methodology for automated analysis of disturbances in power plants. A fuzzy reasoning system is proposed to deal with the data from the DFRs. The objective of the system is to help the engineer resposnible for the analysis of the DFRs’s information by means of a pre-classification of data. For that, the fuzzy system is responsible for generating unit operational state diagnosis and fault classification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis aims to investigate the interaction of acoustic waves and fiber Bragg gratings (FBGs) in standard and suspended-core fibers (SCFs), to evaluate the influence of the fiber, grating and modulator design on the increase of the modulation efficiency, bandwidth and frequency. Initially, the frequency response and the resonant acoustic modes of a low frequency acousto-optic modulator (f < 1.2 MHz) are numerically investigated by using the finite element method. Later, the interaction of longitudinal acoustic waves and FBGs in SCFs is also numerically investigated. The fiber geometric parameters are varied and the strain and grating properties are simulated by means of the finite element method and the transfer matrix method. The study indicates that the air holes composing the SCF cause a significant reduction of the amount of silica in the fiber cross section increasing acousto-optic interaction in the core. Experimental modulation of the reflectivity of FBGs inscribed in two distinct SCFs indicates evidences of this increased interaction. Besides, a method to acoustically induce a dynamic phase-shift in a chirped FBG employing an optimized design of modulator is shown. Afterwards, a combination of this modulator and a FBG inscribed in a three air holes SCF is applied to mode-lock an ytterbium doped fiber laser. To improve the modulator design for future applications, two other distinct devices are investigated to increase the acousto-optic interaction, bandwidth and frequency (f > 10 MHz). A high reflectivity modulation has been achieved for a modulator based on a tapered fiber. Moreover, an increased modulated bandwidth (320 pm) has been obtained for a modulator based on interaction of a radial long period grating (RLPG) and a FBG inscribed in a standard fiber. In summary, the results show a considerable reduction of the grating/fiber length and the modulator size, indicating possibilities for compact and faster acousto-optic fiber devices. Additionally, the increased interaction efficiency, modulated bandwidth and frequency can be useful to shorten the pulse width of future all-fiber mode-locked fiber lasers, as well, to other photonic devices which require the control of the light in optical fibers by electrically tunable acoustic waves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiologists and animal scientists try to understand the relationship between ruminants and their environment. The knowledge about feeding behavior of these animals is the key to maximize the production of meat and milk and their derivatives and ensure animal welfare. Within the area called precision farming, one of the goals is to find a model that describes animal nutrition. Existing methods for determining the consumption and ingestive patterns are often time-consuming and imprecise. Therefore, an accurate and less laborious method may be relevant for feeding behaviour recognition. Surface electromyography (sEMG) is able to provide information of muscle activity. Through sEMG of the muscles of mastication, coupled with instrumentation techniques, signal processing and data classification, it is possible to extract the variables of interest that describe chewing activity. This work presents a new method for chewing pattern evaluation, feed intake prediction and for the determination of rumination, food and daily rest time through ruminant animals masseter muscle sEMG signals. Short-term evaluation results are shown and discussed, evidencing employed methods viability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed generation systems must fulfill standards specifications of current harmonics injected to the grid. In order to satisfy these grid requirements, passive filters are connected between inverter and grid. This work compares the characteristic response of the traditional inductive (L) filter with the inductive-capacitive-inductive (LCL) filter. It is shown that increasing the inductance L leads to a good ripple current suppression around the inverter switching frequency. The LCL filter provides better harmonic attenuation and reduces the filter size. The main drawback is the LCL filter impedance, which is characterized by a typical resonance peak, which must be damped to avoid instability. Passive or active techniques can be used to damp the LCL resonance. To address this issue, this dissertation presents a comparison of current control for PV grid-tied inverters with L filter and LCL filter and also discuss the use of active and passive damping for different regions of resonance frequency. From the mathematical models, a design methodology of the controllers was developed and the dynamic behavior of the system operating in closed loop was investigated. To validate the studies developed during this work, experimental results are presented using a three-phase 5kW experimental platform. The main components and their functions are discussed in this work. Experimental results are given to support the theoretical analysis and to illustrate the performance of grid-connected PV inverter system. It is shown that the resonant frequency of the system, and sampling frequency can be associated in order to calculate a critical frequency, below which is essential to perform the damping of the LCL filter. Also, the experimental results show that the active buffer per virtual resistor, although with a simple development, is effective to damp the resonance of the LCL filter and allow the system to operate stable within predetermined parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years the photovoltaic generation has had greater insertion in the energy mix of the most developed countries, growing at annual rates of over 30%. The pressure for the reduction of pollutant emissions, diversification of the energy mix and the drop in prices are the main factors driving this growth. Grid tied systems plays an important role in alleviating the energy crisis and diversification of energy sources. Among the grid tied systems, building integrated photovoltaic systems suffers from partial shading of the photovoltaic modules and consequently the energy yield is reduced. In such cases, classical forms of modules connection do not produce good results and new techniques have been developed to increase the amount of energy produced by a set of modules. In the parallel connection technique of photovoltaic modules, a high voltage gain DC-DC converter is required, which is relatively complex to build with high efficiency. The current-fed isolated converters explored in this work have some desirable characteristics for this type of application, such as: low input current ripple and input voltage ripple, high voltage gain, galvanic isolation, feature high power capacity and it achieve soft switching in a wide operating range. This study presents contributions to the study of a high gain and high efficiency DC-DC converter for use in a parallel system of photovoltaic generation, being possible the use in a microinverter or with central inverter. The main contributions of this work are: analysis of the active clamping circuit operation proposing that the clamp capacitor connection must be done on the negative node of the power supply to reduce the input current ripple and thus reduce the filter requirements; use of a voltage doubler in the output rectifier to reduce the number of components and to extend the gain of the converter; detailed study of the converter components in order to raise the efficiency; obtaining the AC equivalent model and control system design. As a result, a DC-DC converter with high gain, high efficiency and without electrolytic capacitors in the power stage was developed. In the final part of this work the DC-DC converter operation connected to an inverter is presented. Besides, the DC bus controller is designed and are implemented two maximum power point tracking algorithms. Experimental results of full system operation connected to an emulator and subsequently to a real photovoltaic module are also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this work is the automatic analysis of disturbance records for electrical power generating units. The main proposition is a method based on wavelet transform applied to short-term disturbance records (waveform records). The goal of the method is to detect the time instants of recorded disturbances and extract meaningful information that characterize the faults. The result is a set of representative information of the monitored signals in power generators. This information can be further classified by an expert system (or other classification method) in order to classify the faults and other abnormal operating conditions. The large amount of data produced by digital fault recorders during faults justify the research of methods to assist the analysts in their task of analysing the disturbances. The literature review pointed out the state of the art and possible applications for oscillography records. The review of the COMTRADE standard and wavelet transform underlines the choice of the method for solving the problem. The conducted tests lead to the determination of the best mother wavelet for the segmentation process. The application of the proposed method to five case studies with real oscillographic records confirmed the accuracy and efficiency of the proposed scheme. With this research, the post-operation analysis of occurrences is improved and as a direct result is the reduction of the time that generators are offline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The communication in vehicular ad hoc networks (VANETs) is commonly divided in two scenarios, namely vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). Aiming at establishing secure communication against eavesdroppers, recent works have proposed the exchange of secret keys based on the variation in received signal strength (RSS). However, the performance of such scheme depends on the channel variation rate, being more appropriate for scenarios where the channel varies rapidly, as is usually the case with V2V communication. In the communication V2I, the channel commonly undergoes slow fading. In this work we propose the use of multiple antennas in order to artificially generate a fast fading channel so that the extraction of secret keys out of the RSS becomes feasible in a V2I scenario. Numerical analysis shows that the proposed model can outperform, in terms of secret bit extraction rate, a frequency hopping-based method proposed in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a low cost architecture for development of synchronized phasor measurement units (PMU). The device is intended to be connected in the low voltage grid, which allows the monitoring of transmission and distribution networks. Developments of this project include a complete PMU, with instrumentation module for use in low voltage network, GPS module to provide the sync signal and time stamp for the measures, processing unit with the acquisition system, phasor estimation and formatting data according to the standard and finally, communication module for data transmission. For the development and evaluation of the performance of this PMU, it was developed a set of applications in LabVIEW environment with specific features that let analyze the behavior of the measures and identify the sources of error of the PMU, as well as to apply all the tests proposed by the standard. The first application, useful for the development of instrumentation, consists of a function generator integrated with an oscilloscope, which allows the generation and acquisition of signals synchronously, in addition to the handling of samples. The second and main, is the test platform, with capabality of generating all tests provided by the synchronized phasor measurement standard IEEE C37.118.1, allowing store data or make the analysis of the measurements in real time. Finally, a third application was developed to evaluate the results of the tests and generate calibration curves to adjust the PMU. The results include all the tests proposed by synchrophasors standard and an additional test that evaluates the impact of noise. Moreover, through two prototypes connected to the electrical installation of consumers in same distribution circuit, it was obtained monitoring records that allowed the identification of loads in consumer and power quality analysis, beyond the event detection at the distribution and transmission levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insertion of distributed generation units in the electric power systems have contributed to the popularization of microgrid concepts. With the microgrids, several potential benefits can be achieved in regard to power quality and supply reliability. However, several technical challenges related to the control and operation of microgrids, which are associated with high insertion of generation systems based on static converters, must be overcame. Among the opportunities in the context of microgrids, there is the islanded operation of microgrids temporarily disconnected from the electric power systems and also the autonomous operation of geographically isolated microgrids. The frequency in large power systems is traditionally controlled by the generation units based on traditional synchronous generator. The insertion of distributed generation units based on static power converters may bring difficulties to the frequency control in microgrids, due to the reduction of the equivalent inertia of conventional synchronous generators present in islanded and isolated microgrids. In this context, it becomes necessary the proposition of new operational and control strategies for microgrids control, taking into account the presence of distributed generation units based on full-rated converter. This paper proposes an operational and control strategy for the islanded operation of a winddiesel microgrid with high insertion level of wind generation. The microgrid adopted in this study comprises of a wind energy conversion system with synchronous generator based on full rated converter, a diesel generator (DIG) and a dump load. Due to the high insertion level of wind generation, the wind unit operates in Vf mode and the diesel generator operates in PQ mode. The diesel generator and the dump load are used to regulate the DC-link voltage of the wind generation unit. The proposed control allows the islanded operation of the microgrid only with wind generation, wind-only mode (WO), and with wind-diesel generation, wind-diesel mode (WD). For the wind-only mode, with 100% of penetration level of wind generation, it is proposed a DC-link voltage control loop based on the use of a DC dump load. For the winddiesel mode, it is proposed a DC-link voltage control loop added to the diesel generator, which is connected to the AC side of the microgrid, in coordinated action with the dump load. The proposed operational and control strategy does not require the use of batteries and aims to maximize the energy production from wind generation, ensuring the uninterrupted operation of the microgrid. The results have showed that the operational and control strategy allowed the stable operation of the islanded microgrid and that the DC-link voltage control loop added to the diesel generator and the dump load proved to be effective during the typical variations of wind speed and load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents a proposal of speed servomechanisms without the use of mechanical sensors (sensorless) using induction motors. A comparison is performed and propose techniques for pet rotor speed, analyzing performance in different conditions of speed and load. For the determination of control technique, initially, is performed an analysis of the technical literature of the main control and speed estimation used, with their characteristics and limitations. The proposed technique for servo sensorless speed induction motor uses indirect field-oriented control (IFOC), composed of four controllers of the proportional-integral type (PI): rotor flux controller, speed controller and current controllers in the direct and quadrature shaft. As the main focus of the work is in the speed control loop was implemented in Matlab the recursive least squares algorithm (RLS) for identification of mechanical parameters, such as moment of inertia and friction coefficient. Thus, the speed of outer loop controller gains can be self adjusted to compensate for any changes in the mechanical parameters. For speed estimation techniques are analyzed: MRAS by rotóricos fluxes MRAS by counter EMF, MRAS by instantaneous reactive power, slip, locked loop phase (PLL) and sliding mode. A proposition of estimation in sliding mode based on speed, which is performed a change in rotor flux observer structure is displayed. To evaluate the techniques are performed theoretical analyzes in Matlab simulation environment and experimental platform in electrical machinery drives. The DSP TMS320F28069 was used for experimental implementation of speed estimation techniques and check the performance of the same in a wide speed range, including load insertion. From this analysis is carried out to implement closed-loop control of sensorless speed IFOC structure. The results demonstrated the real possibility of replacing mechanical sensors for estimation techniques proposed and analyzed. Among these, the estimator based on PLL demonstrated the best performance in various conditions, while the technique based on sliding mode has good capacity estimation in steady state and robustness to parametric variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of non-linear loads at a point in the distribution system may deform voltage waveform due to the consumption of non-sinusoidal currents. The use of active power filters allows significant reduction of the harmonic content in the supply current. However, the processing of digital control structures for these filters may require high performance hardware, particularly for reference currents calculation. This work describes the development of hardware structures with high processing capability for application in active power filters. In this sense, it considers an architecture that allows parallel processing using programmable logic devices. The developed structure uses a hybrid model using a DSP and an FPGA. The DSP is used for the acquisition of current and voltage signals, calculation of fundamental current related controllers and PWM generation. The FPGA is used for intensive signal processing, such as the harmonic compensators. In this way, from the experimental analysis, significant reductions of the processing time are achieved when compared to traditional approaches using only DSP. The experimental results validate the designed structure and these results are compared with other ones from architectures reported in the literature.